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In an earlier work [Phys. Rev. A 44, 4061 (1991)] a method of carrying out Monte Carlo simulations in
the microcanonical ensemble was discussed and applied to systems described by continuous potentials.
This method can also be used for discrete systems, e.g., spin, lattice gas, or alloy type models where it
furnishes a different way of exploring the system than the canonical ensemble. A complete statistical
mechanics and related thermodynamics exists for this microcanonical ensemble. We give microcanoni-
cal ensemble fluctuation formulas for the specific heat and constant energy susceptibility and relate these
to the analogous canonical ensemble expressions for the Ising model. As an example we present simula-
tion results for a two-dimensional Ising model and compare the microcanonical and canonical ensemble
calculation of various physical properties of the system. An interesting feature is the appearance of a
large (16%) ensemble difference between the specific heat in canonical and microcanonical ensemble
simulations for a 30X 30 Ising system in the vicinity of the maximum in the specific heat.

PACS number(s): 05.20.—y, 05.70.—a, 02.50.—r

I. INTRODUCTION

Following the introduction of the canonical ensemble
Monte Carlo method into statistical mechanics by
Metropolis et al. [1] most Monte Carlo simulations have
used the canonical ensemble. Recently [2] we discussed a
microcanonical ensemble Monte Carlo procedure and ap-
plied it to systems described by a continuous potential.
We have also developed other constant energy ensembles
and carried out Monte Carlo simulations in these ensem-
bles; these include the isoenthalpic-isotension ensemble
[3], and other ensembles that describe open systems [4].

Since the microcanonical ensemble describes an isolat-
ed system this ensemble is at least as fundamental as the
canonical ensemble but has, inappropriately, been
neglected in simulation work since the canonical ensem-
ble is more popular in analytic work where it is usually
much simpler to use; in simulations there is no difference
in difficulty between using the canonical or microcanoni-
cal ensembles.

Other microcanonical simulations of discrete systems
employ the microcanonical simulation method of Cruetz
[5], which is, however, not a Monte Carlo method but a
deterministic procedure. Because Cruetz’s method in-
volves only integer variables and no random numbers one
can make very efficient programs using this procedure,
and this property has been exploited by various workers
[6-8]. Other simulations of discrete systems have been
carried out using Cruetz’s method including the works of
Harris [9], Gould and Tobocnik [10], and Heermann [11].
Cruetz’s microcanonical simulation method applied to
discrete systems makes use of a plausible algorithm to
equilibrate a system under conditions of constant energy,
where the energy is the sum of the systems potential ener-
gy and the energy of a demon that is introduced into the
algorithm. Although the Cruetz method has certain ad-
vantages, such as efficiency, it does not appear to have a
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rigorous basis in statistical mechanics and apparently
cannot be used to directly (i.e., using fluctuation formu-
las) calculate thermodynamic response function such as
specific heats, susceptibilities, etc. in the microcanonical
ensemble.

In this paper we discuss and illustrate the microcanoni-
cal ensemble simulation method applied to discrete sys-
tems. Since this microcanonical ensemble method is
rigorously based in statistical mechanics we can calculate
anything that can be calculated in the canonical or any
other ensemble. We shall give the basic fluctuation for-
mulas for the specific heat and susceptibility and relate
these to the analogous relations in the canonical ensemble
for the Ising model. We shall present detailed results of
simulations of a 30X 30 Ising spin system in zero magnet-
ic field and give some results for a 60X 60 system in both
the canonical and microcanonical ensembles.

II. DIFFERENT ENSEMBLES
A. General discussion

In a Monte Carlo simulation one carries out a Marko-
vian random walk through the space of system
configurations such that the configurations that are gen-
erated have the probability distribution of the
ensemble employed. In the thermodynamic limit
(N,V— «,N/V —finite) different ensembles in general
produce equivalent results. However, for finite systems,
such as used in many-body simulations, there are finite
size effects that can lead to differences in physical quanti-
ties in different ensembles. For example, the thermo-
dynamic variables that are held fixed in a particular en-
semble are ensemble dependent, as are the basic fluctua-
tion formulas that can be used for calculating thermo-
dynamic response functions. We shall show a dramatic
example of ensemble dependence of the specific heat in a
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two-dimensional Ising model where there is a 16%
difference in the specific heats calculated in the canonical
and microcanonical ensembles near the maximum value.
This large ensemble difference is a precursor of the phase
transformation of the system in the thermodynamic limit.

It has been conjectured that fixing the energy rather
than the temperature should permit, for example, a more
detailed study of the coexistence region in first order
phase transformations [12], although this has been ques-
tioned by Brown and Yegulalp [13]. It is sometimes stat-
ed that the rate of approach of a system to equilibrium
may be influenced by the particular ensemble employed.
Below we shall summarize a few results from the canoni-
cal and microcanonical ensembles and later compare
simulation results from these two ensembles for the same
system, and two-dimensional Ising model in zero magnet-
ic field.

B. Canonical ensemble

The canonical ensemble is described by a probability
density in phase space W,_(p,s), where p represents the
momenta of the N particles and s represents the
configuration variables that in this case are the spin of
each particle,

—H(p,s)/(kgT)
’

(1)

where H =K (p)+ U (s) is the system Hamiltonian, K (p)
the kinetic energy, U(s) the potential energy, and 4 a
constant. Although often we do not think of the particles
in a discrete system, such as an Ising model, as having a
kinetic energy, we can imagine the spin is associated with
particles with momentum p which have a very large mass
so that there is no spatial motion of the particles. In-
tegrating over the momenta then leads to the
configuration probability density

WT(S)=A,e—U(s)/(kBT)’ @)
where A’ is another constant. The Metropolis
Monte Carlo acceptance probability is Wi(s—s')
=min[ 1, Wr(s')/Wr(s)] with Wr(s) given by Eq. (2).
In the present applications we generate trial states s’ by
going through all the spins in sequence. The state s’
differs from s by one spin being inverted and the accep-
tance or refection of this trial state is determined by the
Metropolis probability given above.

The average value of any quantity A4 (s) can be deter-
mined using the probability density W(s) as

S Wrls)A(s)

_ Is}

A=,

(4) SWs) 3)
(s}

where Em represents a sum over all spin configurations.
The canonical ensemble Metropolis Monte Carlo method

is a procedure for evaluating (estimating) the average
values in Eq. (3). The average energy of the system is

dNk, T
2

where d is the spatial dimension of the system and the

W.(p,s)= Ae

(E)= +(U), (4)
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temperature 7T is an input parameter. For simplicity in
writing down the fluctuation formulas we consider a d-
dimensional Ising model defined by the potential energy
Uls),

(ij) i

where J is the spin-spin coupling constant and B is the
external magnetic field; we have chosen units such that J
and B are in units of energy and the notation {ij) indi-
cates a sum over distinct nearest neighbor interactions.
The magnetization of the system is defined as the nega-
tive derivative of U(s) with respect to B,
M =—[3U(s)/dB], with the average of M being the
thermodynamic magnetization of the system. The
configuration heat capacity C =(3{U)/dT); and the
isothermal susceptibility x;=(3(M ) /0B )y can be eval-
uated from the canonical ensemble fluctuation formulas

1
Cc= Ur)—(u)? 6
kBT2(< )—(U)?) ©)
and
—_1 2y _ 2
Xt kBT(<M> (M)?), (7

which may be derived by direct differentiation [10].

C. Microcanonical ensemble

The microcanonical probability density W, (p,s) has a
constant value on the energy shell H (p,s)=E, where H is
the system Hamiltonian

W, (p,s)=D&E —H (p,s)) , (8)

where D is a constant and & represents the Dirac delta
function. By integrating Eq. (8) over the momenta we ob-
tain the configuration probability density for the micro-
canonical ensemble W(s)?,

Wg(s)=D'(E —U(s))ND71@(E —U(s)) , )

where d is the spatial dimension of the system, ®(x) is
the unit step function that is 1 for x >0 and zero other-
wise, and D’ is another constant; the ® function arises
because the kinetic energy of the system K =FE —U is
positive. The Monte Carlo acceptance probability is
W(s—s')=min[1, Wg(s")/Wg(s)] with W(s) given by
Eq. (9). The trial states are generated by going through
the spins in sequence and attempting to invert the spins
one at a time. The acceptance or rejection of the trial
state is determined by the Metropolis rules.

The microcanonical ensemble average value of any
quantity A (s) can be determined using the probability
density Wy (s) as

S Wils)A(s)

_ 1is} _ (10)
S 7T
{s}

where 3, /s) Tepresents a sum over all spin configurations.
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The microcanonical ensemble Monte Carlo method is a
procedure for evaluating (estimating) the averages in Eq.
(10). The average value of E — U (s) is the kinetic energy
(K)=(E—U(s))=E —(U(s)) and we use this to
define the system temperature via

dNkyT/2=(K) . (11)

For simplicity in writing down the fluctuating formulas
we again consider a d-dimensional Ising model defined by
the potential energy U (s). Differentiating 7 in Eq. (11)
with respect to E at constant B we obtain the fluctuation
formula for the heat capacity 1/Cz=(9T /0E )y,

dNk
£ _aN (K)(%), (12)

2C, 2

an _
2

1

where the appearance of the average of the inverse kinet-
ic energy (K =E — U) arises directly from the form of the
probability distribution Eq. (9) for an energy shell ensem-
ble. Note that the heat capacity Cp contains the ideal
gas contribution, Cp=dNkyz+C, where C is the
configuration heat capacity. Equation (12) should be
compared with Eq. (6) in the canonical ensemble. Note
that in the canonical ensemble C is directly related to the
fluctuations in the potential energy but in the micro-
canonical ensemble this is no longer the case; one cannot
reduce Eq. (12) to contain only U and not E or K.

The microcanonical ensemble fluctuation formula for
the constant energy susceptibility y;=(3(M ) /0B )y is

given by
l(%)—(M)(%)} , (13)

which we derive by differentiating { M ) with respect to B
at constant E. Equation (13) should be compared to Eq.
(7); note, however, that these two susceptibilities are not
the same quantity since they are defined by holding
different quantities constant; T for the canonical ensem-
ble and E for the microcanonical ensemble. By using
thermodynamic relations we can establish the following
connection between the constant energy and isothermal
susceptibilities:

dN _

XE= 2

o 2] )00 3
x 12’!—1‘<K><%)—"7N<M>], (14)

where all quantities on the right-hand side are evaluated
in the microcanonical ensemble. Equation (14) allows us
to calculate the isothermal susceptibility in a micro-
canonical ensemble simulation from the constant energy
susceptibility. Of course, it is also possible to calculate
the constant energy susceptibility from the isothermal
susceptibility in the canonical ensemble; for completeness
we give the formula
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— L _
XE=Xr CBkBT2(<MU) (M)(U))
1 —
X kBT(<MU>~<M)(U)) (M) |,

(15)

where all quantities on the right-hand side of Eq. (15) are
evaluated in the canonical ensemble.

III. SIMULATION RESULTS

We constructed programs to study the two-
dimensional Ising model using either the canonical or mi-
crocanonical ensemble. Periodic boundary conditions
were used in all simulations. We shall present detailed
data for a 30X30 spin system in zero magnetic field.
Each spin can either be up (+1) or down (—1) and the
system is described by the potential energy of Eq. (5) with
B =0. We shall measure the energy in units of J and the
temperature in units of k3T /J so that all quantities we
quote will be dimensionless. The pseudorandom number
generator RANMAR developed by Marsaglia, Zaman,
and Tsang [14] and discussed by James [15] was em-
ployed; a few calculations were carried out for checks us-
ing other random number generators. For the canonical
ensemble we selected nine temperatures from 1.5 to 3.0.
The results we found for quantities in the canonical en-
semble are consistent with published results for this sys-
tem. The phase transformation in the thermodynamic
limit (Onsager’s solution) occurs at a temperature of ap-
proximately 2.269. We equilibrated the system at each of
the nine temperatures for at least 5X10® Monte Carlo
moves, where a Monte Carlo move consists of separate
attempts to invert each of the 900 spins in the lattice in
sequence. Thus, each move consists of 900 Metropolis

2000
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FIG. 1. Energy vs temperature for the nine simulations. The
solid line and the squares are the canonical ensemble values and
the diamonds and dashed line are the microcanonical ensemble
values. The lines are just to guide the eye. Note the dashed line
is not apparent in this figure due to the close agreement between
the values in the two ensembles. The values used to make these
graphs are shown in Tables I and II.
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TABLE 1. Canonical ensemble Monte Carlo temperature, average total energy, average absolute
value of the magnetization divided by the maximum absolute value of the magnetization (i.e., 900 for
the 30X 30 lattice), average potential energy divided by the minimum possible value of the potential en-
ergy (—1800), and the specific heat for the 30X 30 Ising model. All the quantities are dimensionless.
The average values were determined by carrying out five simulations of 1X 10° moves and averaging the
five numbers obtained. Using the values from these five simulations the standard deviation was deter-
mined as an uncertainty or error estimate. These error estimates are given below each value. The tem-
perature is an input value and has no uncertainty.

T (E) (1M1} /M, (U)/U, c
1.500 —406.02 0.98 650 0.97557 0.19723
(1.3X1072) (4.5X107%) (8.9X1079) (2.2X107%
2.000 229.00 0.91132 0.87278 0.72 530
(1.1X107Y) (9.1X1077) (6.3X1079) (2.0X1073)
2.100 394.09 0.86 876 0.83 106 0.96278
(1.3%x107Y) (22X107%) (7.4X1077) (1.8X1073)
2.200 587.74 0.78 587 0.77 348 1.3950
(3.8%x1071) (7.3X107%) (2.1X107%) (7.6X1073)
2.250 703.09 0.70263 0.73439 1.72195
(6.1x1071) (1.6X1073) T (34X107%) (8.4X1073)
2.300 829.94 0.57 900 0.68 892 1.8712
(6.3%X1071) (2.1X1073) (3.5X107%) (4.4X1073)
2.400 1066.83 0.33282 0.60732 1.3026
(1.6X107") (7.9X107%) (8.9X1079) (3.9%X1073)
2.500 1253.00 0.21454 0.55 389 0.89491
(8.4X1072) (3.0X107%) (4.7X107) (1.2X1073)
3.000 1964.52 0.09 080 0.40 860 0.40 124
(8.6 X1072) (1.6 X107%) (4.8X1079) (8.3X107%)

Monte Carlo decisions on trial single spin inversions. deviation.

After the equilibration period we carried out five 1X 10°
move canonical ensemble Monte Carlo simulations to
collect various averages at each temperature; the five
values are used to estimate an uncertainty or error esti-
mate in each average value by calculating the standard

TABLE II. Microcanonical ensemble Monte Carlo average temperature, total energy, average abso-
lute value of the magnetization divided by the maximum absolute value of the magnetization, average
potential energy divided by the minimum possible value of the potential energy, and the specific heat.
All the quantities are dimensionless. The average values were determined by carrying out five simula-
tions of 1X 10% moves and averaging the five numbers obtained. Using the values from these five simu-
lations the standard deviation was determined as an uncertainty or error estimate. The energy is an in-
put value and has no uncertainty. These error estimates are given below each value.

(E-U)/N=T E (M) /1M, (U /U, ¢
1.5005 —406.00 0.98 667 0.97 581 0.19576
(1.7X107%) (5.6X1079) (8.4X1079) (2.6X107%)
2.0014 229.00 0.91267 0.87 348 0.71799
(3.0X107%) (1.6 X1077) (1.5X107%) (2.1X1073)
2.1086 394.08 0.86 805 0.82872 0.97 132
(9.6 X1077) (12X107%) (4.8X1077%) (2.9%X1073)
2.2031 588.20 0.79 586 0.77 477 1.3632
(1.5X107%) (3.3X107%) (7.4X107%) (6.9%X1073)
2.2531 703.09 0.72 056 0.73 594 1.7727
(1.6X107%) (8.7X107%) (8.0X107%) (1.5X1072)
2.2997 829.94 0.58 828 0.68 879 2.1707
(2.3X107%) (1.1X1073) (1.2X107%) (3.1X1072)
2.3957 1066.00 0.31710 0.60562 1.2687
(7.7X1079) (1.4X1073) (7.7X1079) (3.6X1073)
2.4977 1253.00 0.20 657 0.55273 0.87 424
(5.7X107%) (6.4X107%) (2.8X107%) (2.7X1073)
2.9984 1964.00 0.09 194 0.40814 0.40 004

(7.1X1079) (8.7X1077) (3.5X1077) (1.3X1073)
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From the average potential energy {( U) in the canoni-
cal ensemble simulations we use Eq. (4) to calculate the
energy E to be used in the microcanonical ensemble
simulations. From the nine canonical ensemble simula-
tions at different temperatures we determine nine ener-
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gies, which were then input into the probability density
for the microcanonical ensemble, Eq. (9). We then equili-
brated the system at the nine different energies for at least
5% 10® moves using the microcanonical ensemble Monte
Carlo method. After this equilibration period we carried
out five 1X10°® move microcanonical ensemble simula-
tions, to collect various averages at each energy and to
obtain an estimate of the uncertainty in the values.

In Fig. 1 we show the total energy E versus tempera-
ture values T for the two different ensembles for the nine
different energies/temperatures. The squares are the
canonical ensemble values while the diamonds are the mi-
crocanonical ensemble values. In the canonical ensemble
the energy is the calculated value, whereas in the micro-
canonical ensemble it is the temperature that is the calcu-
lated value. As is clear in Fig. 1 there is very close agree-
ment between the values of E, T between the two ensem-
bles. This further supports our suggestion that either of
the two ensembles can be used to study the system.
There are ensemble differences in the average values of
quantities for finite systems [16]. For the energy we may
use Eq. (2.10) of Ref. [16] to find the relation E,, =E,,
where E,, is the energy in the microcanonical ensemble,
E, is the average energy in the canonical ensemble. The
energies are shown in Tables I and II.

In Fig. 2 we show the dimensionless configuration
specific heat, ¢ =C/Nkp, calculated in the two ensem-
bles. The two specific heats show close agreement except
near the maximum, 7 =2.30 where c(microcanonical
=2.1707%0.03, while c(canonical) =1.8712+0.004.
This large ensemble difference in specific heats is due to
incipient phase transformation in the model. Note that
in the thermodynamic limit (Onsager’s solution) the
specific heat is divergent at the transition temperature.
In Fig. 3 we show a more detailed view of the region near
the maximum in Fig. 2. Note that the specific heats arise
from the first derivative of the energy verses temperature
curves shown in Fig. 1. We use the fluctuation formulas
to determine the first derivative of these curves directly,
but it would be very difficult to accurately determine the
specific heats in the vicinity of the maximum by numeri-
cal differentiation of the energies in Fig. 1. This shows
the power of using fluctuation formulas in this region. It

25 ——1———————— 7

20

1 L 1 L Il

n 1 1 n
1.4 1.6 1.8 20 22 24 26 28 30
T

FIG. 2. Configuration specific heat for the nine simulations
¢ =C/Nkg. The solid line and the squares are the canonical en-
semble values and the diamonds and dashed line are the micro-

00 Lt

canonical ensemble values. The lines are just to guide the eye.
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is possible that this large difference between quantities
calculated in different ensembles could be useful in
searching for or characterizing the nature of phase trans-
formations in other systems. A (higher order) phase
transformation would be characterized by when the en-
semble difference between (intensive) physical quantities
is much greater than O(1/N); in our case this is 16%
compared to around 0.1%. Much more work would have
to be done to see if this is a useful procedure.

We also carried out some calculations on a 60X 60 lat-
tice near the maximum in the specific heat using the two
ensembles. The temperature near the maximum in this
larger system is around 2.28, whereas in the 30X 30 lat-
tice the temperature near the maximum was 2.30; thus,
we see the expected shift in the temperature towards the
Onsager value (2.269) for the large system. For the
60X 60 lattice at this temperature the microcanonical and
canonical specific heats are 2.46410.02 and 2.226+0.02,
respectively. Hence, we see the expected increase in the
value of the specific heat as well as the narrowing of the
difference of the specific heats in the two ensembles for
the larger system; from 0.30 or 16% for the 30X 30 sys-
tem to 0.24 or 10% for the 60X 60 system.

In Fig. 4 we show the average of the absolute value of
the magnetization in the canonical and microcanonical
ensembles, which also shows close agreement between the
value of this quantity in the two ensembles. We also cal-
culated the constant energy and constant temperature
susceptibilities in the simulations but we have not
presented the values of these quantities in this paper.
Part of the reason for this is the difficulty of calculating
the average value of M in the finite Ising model in zero
magnetic fields at temperatures below the transition tem-
perature where in the finite system the lattice spins may
turn over while in the thermodynamic limit (Onsager
solution) the symmetry is broken; i.e., there is spontane-
ous magnetization below the transition temperature. In
simulations at 77=2.1 the lattice turns over once in
several million moves, which leads to large uncertainties
in the value of the magnetization. This problem does not
occur for the average of the energy U, the specific heat,

2.50 T T T T T T

2.25 |- i
2.00 & o ]
1.75 - < N i

1.50 - ~ N\ B

125 : ' : ' : :
2.20 2.25 2.30 2.35 2.40
T

FIG. 3. Region around the maximum in Fig. 2 shown in
more detail. The solid line and the squares are the canonical en-
semble values and the diamonds and dashed line are the micro-
canonical ensemble values. The lines are just to guide the eye.
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FIG. 4. The average of the absolute value of the magnetiza-
tion for the nine different temperatures. The solid line and the
squares are the canonical ensemble values and the diamonds
and dashed line are the microcanonical ensemble values. The
lines are just to guide the eye.

or of the absolute value of the magnetization.

The uncertainties or errors estimates we have quoted
were determined by making five independent 13X 10°
move runs and finding the standard deviation of the five
numbers. In Table I we give the values used to construct
Figs 1, 2, and 4 for the canonical ensemble, whereas in
Table II we give the microcanonical ensemble values; the
error estimates are also included in the tables.

IV. CONCLUSIONS

We have demonstrated that the microcanonical ensem-
ble discussed for continuous potentials in Ref. [2] can
also be applied to describe discrete systems and, of
course, for continuous and discrete systems. Since the
microcanonical ensemble represents an isolated system
we feel that this description of a system is at least as fun-
damental as the canonical ensemble. There is a historical
bias against using the microcanonical ensemble because
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of its complicated form for analytic work; however, in
Monte Carlo simulations there is no difference in com-
plexity between the two ensembles and one may use ei-
ther ensemble: in the canonical ensemble we fix the tem-
perature and determine the energy by an average, while
in the microcanonical ensemble we fix the energy and
determine the temperature by an average.

We have shown that the ensemble dependence of the
specific heat can be easily detected (16%) for a system
with 900 spins (10%) for a system with 3600 spins in the
vicinity of the maximum of the specific heat. This
difference is a precursor to the phase transformation in
the Onsager solution. It is possible that this large
difference in the values between the same quantity calcu-
lated in different ensembles could be used to scan the
phase diagram of a system for phase transformations.

For continuous potentials one can generate the micro-
canonical ensemble by either molecular dynamics or the
microcanonical Monte Carlo method. However, for a
discrete system only the Monte Carlo method can be used
to generate the microcanonical ensemble. One might
consider the microcanonical ensemble the more funda-
mental description of a system since it does not require
the introduction of a heat reservoir, but regardless of how
one feels about such philosophical statements it is impor-
tant to know that the microcanonical ensemble is avail-
able for use in simulations of discrete systems and can be
used to calculate any property that can be calculated in
the canonical ensemble. The microcanonical ensemble
may be an important tool for unlocking the thermo-
dynamic phase diagram for the system.
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